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Abstract
The aim of this multicenter study was to prospectively assess the predictive value of multiparametric cardiac magnetic 
resonance (CMR) for cardiovascular complications in sickle cell disease (SCD) patients. Among all patients with hemo-
globinopathies consecutively enrolled in the Myocardial Iron Overload in Thalassemia (MIOT) Network, we selected 102 
SCD patients (34.38 ± 12.67 years, 49 females). Myocardial iron overload (MIO) was measured by the multislice multiecho 
T2* technique. Atrial dimensions and biventricular function parameters were quantified by cine images. Late gadolinium 
enhancement (LGE) images were acquired to detect focal myocardial fibrosis. At baseline CMR, only two patients had 
significant MIO (global heart T2* < 20 ms). During a mean follow-up of 63.01 ± 24.95 months, 11 cardiovascular events 
(10.8%) were registered: 3 pulmonary hypertension, 2 supraventricular arrhythmias, 1 heart failure, 1 death for heart failure, 
1 pulmonary embolism, 1 peripheral vascular disease, 1 transient ischemic attack, and 1 death after acute chest syndrome. 
In the multivariate analysis, the independent CMR predictors of cardiovascular events were left ventricular (LV) ejection 
fraction (hazard ratio-HR = 0.88; p = 0.025) and right ventricular (RV) mass index (HR = 1.09; p = 0.047). According to 
the receiver-operating characteristic curve analysis for adverse events, an LV ejection fraction < 58.9% and an RV mass 
index > 31 g/m2 were optimal cut-off values. Reduced left ventricular ejection fraction and increased right ventricular mass 
index showed a significant prognostic value in patients with SCD. Our data seem to suggest that CMR may be added as a 
screening tool for identifying SCD patients at high risk for cardiopulmonary and vascular diseases.
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Introduction

Sickle cell disease (SCD) is one of the most common 
inherited disorders of hemoglobin (Hb) production and 
has been recognized as a global public health problem. 
SCD is caused by mutations in the beta-globin gene that 
lead to the production of an abnormal Hb variant, known 
as HbS [1]. SCD can occur due to homozygosity for the 
HbS gene (HbSS), due to compound heterozygosity for 
HbS and another structural hemoglobin variant, such as 
hemoglobin C or D, and due to double heterozygosity of 
HbS and beta-thalassemia (HbS/β-thalassemia or sickle 
cell/β-thalassemia) [2]. HbS/β-thalassemia represents the 
most prevalent form of sickling syndromes in Italy due to 
the high frequency of the β-thalassemia trait.

Thanks to several advances in the diagnosis and treat-
ment, including childhood vaccination, new-borns screen-
ing, penicillin prophylaxis for pneumococcal infection in 
childhood, red blood cell transfusion, hydroxyurea ther-
apy, and comprehensive medical care, early childhood 
mortality of SCD patients has dramatically decreased in 
high-income countries. In the aging population, cardio-
vascular complications are emerging as a major cause of 
reduced quality of life and early mortality [3, 4].

The two clinical hallmarks of SCD, hemolysis and 
vaso-occlusive crises with repeated episodes of ischemia 
and reperfusion, strongly contribute to cardiovascular 
involvement [5, 6]. The microvascular dysfunction related 
to repeated vaso-occlusive events and the nitric oxide 
scavenging resulting from chronic intravascular haemoly-
sis trigger a chronic inflammatory state and widespread 
vasculopathy, that can damage multiple organs, includ-
ing the heart and the lungs [7, 8]. The chronic hemolysis-
related anemia is associated with a compensatory increase 
in blood volume [9], which enhances the ventricular pump 
performance. The anatomical–functional expression of this 
chronic state is the dilatation of all cardiac chambers [10, 
11]. Over time, progressive dilation leads to increased wall 
stress and eccentric hyperthrophy [12]. This volume over-
load state can lead to increased filling pressures, increased 
venous return, abnormal pulmonary hemodynamics, 
arrhythmias, and the syndrome of high-output heart failure 
[13]. Of note, it has been suggested that the high-output 
state of SCD, rather than primary abnormalities of the 
pulmonary microvasculature, represents the major driver 
of pulmonary hypertension (PH) [14].

Chronic transfusion therapy can reduce both hemolytic 
anemia and vaso-occlusive sickling episodes [15], but 
can add another potential factor of stress for the cardio-
vascular system: a secondary state of iron overload [16]. 
Cardiac and vascular iron overload may reduce ventricu-
lar dimensions initially through vascular and ventricular 

stiffening [17, 18] but may increase ventricular dimensions 
and decrease systolic function in end-stage disease [19, 
20]. Myocardial iron overload (MIO) is relatively rare in 
patients with SCD [21–23], but the increasing life expec-
tancy and duration of chronic transfusion will make MIO 
a more significant clinical problem.

Due to its multiparametric nature, cardiac magnetic reso-
nance (CMR) represents a powerful tool to evaluate struc-
tural and functional impairments in the myocardium of SCD 
patients. T2* CMR is the method of choice for the non-
invasive, fast, and reproducible quantification of MIO [24] 
and has been validated against histological findings [25, 26]. 
CMR is the gold standard for the non-invasive assessment of 
biventricular size and function with excellent accuracy and 
reproducibility [27]. In particular, CMR provides the most 
comprehensive information on the right ventricle, by vir-
tue of its high spatial and temporal resolution, its excellent 
signal-to-noise ratio between the myocardium and the blood 
pool, and the fact that, conversely to echocardiography, it is 
free from acoustic window limitations and independent of 
geometric assumptions. Finally, following the injection of a 
contrast agent, CMR represents a valuable tool for the detec-
tion of myocardial fibrosis [28]. In SCD, many processes 
including anemia, ischemia, inflammation, and microvas-
cular disease may predispose to myocardial fibrosis [29].

There are no prospective cohort studies evaluating the 
association between multiparametric CMR findings (heart 
iron, function, and fibrosis) and cardiovascular outcomes 
in SCD patients. Therefore, the aim of this multicenter 
study was to prospectively assess the predictive value of 
CMR parameters for cardiovascular complications in SCD 
patients.

Methods

Patients

Among all patients with hemoglobinopathies consecutively 
enrolled in the Myocardial Iron Overload in Thalassemia 
(MIOT) Network, we selected only those with SCD (N = 109: 
48% females, mean age 35.08 ± 12.87 years). Globally, the fol-
lowing inclusion criteria were adopted in the MIOT Network: 
(1) male and female patients, of all ages, with thalassemia 
syndromes or structural hemoglobin variants, requiring mag-
netic resonance imaging (MRI) to quantify cardiac and liver 
iron burden; (2) written informed consent; (3) written authori-
zation for use and disclosure of protected health information; 
(4) no absolute contraindications to MRI.

The MIOT Network was a collaborative project among 
more than 60 hematological centers and 10 validated 
MRI sites, where MRI exams were performed using 
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homogeneous, standardized, and validated procedures [30, 
31]. All centers were linked by a shared database [32], where 
the clinical-anamnestic history of the patients, from birth 
to the date of the first MRI scan, was recorded. All patients 
performed a routine screening and at every MRI follow-up, 
performed by protocol every 18 ± 3 months, the clinical, 
instrumental, and laboratory data were updated. Clinical 
follow-up continued until September 2016. Each hematolo-
gist completed a case report form detailing patient outcomes 
between the last MRI and September 2016.

The study complied with the Declaration of Helsinki 
and was approved by the institutional ethics committee. All 
patients provided informed consent.

Magnetic resonance

All MRI examinations were performed with a clinical 1.5 T 
scanner (GE Healthcare, Milwaukee, WI, USA). An eight-
element cardiac phased-array receiver surface coil with 
breath-holding in end-expiration and ECG-gating was used.

The T2* technique was used for iron overload assessment. 
A single mid-hepatic slice [33] and three parallel short-axis 
views (basal, medium, and apical) of the left ventricle (LV) 
were acquired in the same imaging session [30, 34]. T2* 
images analysis was performed using a custom-written, previ-
ously validated software (HIPPOMIOT®) [35]. Hepatic T2* 
values were calculated in a circular region of interest [36] 
and were converted into liver iron concentration (LIC) using 
Wood’s calibration curve [37, 38]. The software provided the 
T2* value for all 16 segments of the LV, according to the 
standard American Heart Association (AHA)/American Col-
lege of Cardiology (ACC) model [39], and the global heart 
T2* value was obtained by averaging all segmental values.

For the quantification of biventricular function param-
eters, cine images were acquired in sequential 8 mm short-
axis slices (gap 0 mm) from the atrioventricular ring to 
the apex. Images were analyzed in a standard way using 
MASS® software (Medis, Leiden, The Netherlands) [40]. 
Atrial areas were measured from the 4-chamber view pro-
jection in the ventricular end-systolic phase. Biventricular 
volumes and masses and bi-atrial areas were normalized for 
the body surface area.

To detect the presence of focal/macroscopic myocardial 
fibrosis, late gadolinium enhancement (LGE) short-axis 
and vertical, horizontal, and oblique long-axis images were 
acquired 10–18 min after Gadobutrol (Gadovist®; Bayer 
Schering Pharma; Berlin, Germany) intravenous adminis-
tration at the standard dose of 0.2 mmol/kg. LGE images 
were not acquired in patients with a glomerular filtration 
rate < 30 mL/min/1.73m2 and in patients who refused. LGE 
was considered present when visualized in two different 
views [41, 42].

Diagnostic criteria

An MR LIC ≥ 3 mg/g/dw was considered indicative of sig-
nificant iron load [43]. A T2* measurement of 20 ms was 
taken as a “conservative” normal value for segmental and 
global values [20].

The outcome of this study was the incidence of cardio-
vascular complications, defined as a composite of cardiac 
complications and pulmonary, cerebral, and peripheral vas-
cular diseases. Heart failure (HF) was identified based on 
symptoms, signs, biomarkers, and instrumental parameters, 
according to the current guidelines [44]. Arrhythmias were 
diagnosed and classified according to the AHA/ACC Guide-
lines [45]. PH was diagnosed if the trans-tricuspidal veloc-
ity jet on trans-thoracic echocardiogram was > 3.2 m/s [46] 
in presence of signs and symptoms. In case of suspicion, 
the diagnosis of pulmonary embolism (PE) was accurately 
confirmed or ruled out by non-invasive imaging tests [47]. 
The diagnosis of a transient ischemic attack (TIA) was made 
based on symptoms, objective findings on neurologic exami-
nation, and imaging of the brain [48]. The clinical diagnosis 
of deep vein thrombosis was confirmed by objective testing 
using ultrasound or venography. If a patient developed more 
than one complication, only the first one was considered.

Statistical analysis

All data were analyzed using SPSS version 27.0 (IBM Corp, 
Armonk, NY) and MedCalc version 19.8 (MedCalc Soft-
ware Ltd, Ostend, Belgium) statistical packages.

Continuous variables were described as mean ± standard 
deviation (SD). Categorical variables were expressed as fre-
quencies and percentages.

The normality of the distribution of the continuous vari-
ables was assessed by using the Kolmogorov–Smirnov test.

Comparisons between two groups were made by inde-
pendent-samples t-test for continuous variables with normal 
distribution and Mann–Whitney U test for continuous varia-
bles with non-normal distribution. χ2 testing was performed 
for categorical variables.

Correlation analysis was performed using Pearson’s test 
or Spearman’s test where appropriate.

The Cox proportional-hazard model was used to test the 
association between the considered prognostic variables and 
the outcome. The variables with a statistical significance in 
the univariable analysis were placed in the multivariate model. 
They were ruled out if they did not significantly improve the 
adjustment of the model. The results were presented as hazard 
ratio (HR) with 95% confidence intervals (CI).

The optimal cut-off value of clinical variables with statis-
tical significance in the multivariable analysis was assessed 
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using a receiver-operating characteristic (ROC) curve analy-
sis for the endpoint of this study.

A P < 0.05 was considered statistically significant.

Results

Baseline data

Seven patients were excluded from this study because a 
cardiac complication (4 arrhythmias, 2 HF, and 1 PH) was 
present at the baseline MRI.

The baseline demographic, clinical, and MRI features of 
the 102 considered SCD patients are described in Table 1. 
Patients were homogeneously distributed in terms of gen-
der and the mean age was 34.38 ± 12.67 years. Forty-nine 
(48.0%) patients were under regular transfusion regimen 
(≥ 4 transfusions/year): 39 received simple transfusions 
(mean number of transfusions/year 11.78 ± 6.62) and 10 
exchange transfusions (mean number of transfusions/year 
10.50 ± 3.93). No significant difference in serum hemoglobin 
levels was detected between never/sporadically transfused 
patients and regularly transfused patients (9.44 ± 1.25 g/dl 
vs 9.42 ± 1.24 g/dl; P = 0.881). Hemoglobin levels were not 

associated with biventricular volume or mass indexes but 
showed a weak positive correlation with LV ejection fraction 
(EF) (R = 0.232; P = 0.029). Half of SCD patients were on 
no iron chelation therapy. Among the 51 chelated patients, 
27 were receiving deferoxamine, 15 deferasirox, 7 defer-
iprone, and 2 deferoxamine in combination with deferiprone. 
Hepatic and myocardial iron overload were detected, respec-
tively, in the 54.9% (56/102) and 2.0% (2/102) of patients. 
The contrast medium was administrated only in 66 patients, 
of whom 10 (15.2%) had nonischemic focal myocardial 
fibrosis. A mesocardial LGE at the insertion points of the 
free RV wall in the interventricular septum was found in 5 
patients.

Twenty-four patients had homozygous HbSS and 78 
patients had HbS/β-thalassemia. The latter group included 
both HbS/β0 thalassemia and HbS/β + thalassemia patients, 
not further differentiated according to the beta-globin muta-
tion. The comparison between HbSS and HbS/β-thalassemia 
groups is shown in Table 1. Surgical splenectomy and treat-
ment with hydroxyurea were significantly less common 
in HBSS than in HbS/β-thalassemia patients, but HBSS 
patients were more frequently regularly transfused. Hepatic 
and cardiac iron overload, biventricular function parameters, 
and bi-atrial areas were comparable between the two groups.

Table 1  Baseline demographic, 
clinical and MRI findings in 
SCD patients divided into 
two groups based on the SCD 
genotype

N, number; MRI, magnetic resonance imaging; LIC, liver iron concentration; LV, left ventricular; EDVI, 
end-diastolic volume index; EF, ejection fraction; RV, right ventricular

Variable All patients
(N = 102)

Homozygous HbS
(N = 24)

Hbs/β-thalassemia
(N = 78)

P

Females, N (%) 49 (48.0) 10 (41.7) 39 (50.0) 0.475
Age (years) 34.38 ± 12.67 30.84 ± 12.49 35.47 ± 12.61 0.117
Splenectomy, N (%) 58 (56.9) 7 (29.2) 51 (65.4) 0.002
Regularly transfusions, N (%) 49 (48.0) 17 (70.8) 32 (41.0) 0.011
Chelation therapy, N (%) 51 (50.0) 12 (50.0) 39 (50.0) 1.000
Hydroxyurea therapy, N (%) 48/85 (56.5) 8/21 (38.1) 40/64 (62.5) 0.050
Serum hemoglobin (g/dl) 9.43 ± 1.24 9.72 ± 1.40 9.35 ± 1.19 0.267
Serum ferritin (ng/l) 1308.99 ± 1528.83 1714.42 ± 1824.36 1200.49 ± 1435.04 0.308
MRI LIC (mg/g/dw) 6.82 ± 9.89 9.22 ± 16.79 6.08 ± 6.45 0.862
MRI LIC ≥ 3 mg/g/dw, N (%) 56 (54.9) 13 (54.2) 43 (55.1) 0.934
Global heart T2*(ms) 35.99 ± 6.42 37.99 ± 5.12 35.37 ± 6.68 0.080
Global heart T2* < 20 ms, N (%) 2 (2.0) 0 (0.0) 2 (2.6) 1.000
N. of segments with T2* < 20 ms 1.06 ± 2.37 0.46 ± 1.14 1.24 ± 2.61 0.069
LV EDVI (ml/m2) 93.71 ± 20.73 94.35 ± 22.39 93.51 ± 20.33 0.806
LV mass index (g/m2) 62.17 ± 16.95 63.24 ± 21.89 61.83 ± 15.23 0.859
LV EF (%) 61.39 ± 6.86 63.35 ± 5.82 60.78 ± 7.07 0.109
RV EDVI (ml/m2) 84.17 ± 20.51 83.92 ± 20.92 84.25 ± 20.52 0.732
RV mass index (g/m2) 30.31 ± 8.98 34.58 ± 11.45 29.91 ± 7.63 0.070
RV EF (%) 63.13 ± 7.82 63.42 ± 8.18 63.04 ± 7.76 0.839
Focal myocardial fibrosis, N(%) 10/66 (15.2) 3/15 (20.0) 7/51 (13.7) 0.683
Left atrial area (cm2/m2) 12.77 ± 2.61 13.62 ± 3.16 12.41 ± 2.28 0.089
Right atrial area (cm2/m2) 11.89 ± 2.26 11.69 ± 2.38 11.99 ± 2.22 0.640
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Prediction of cardiovascular complications

The mean follow-up time was 63.01 ± 24.95  months 
(median = 64.71  months). Cardiovascular events were 
recorded in 11 (10.8%) patients: 3 pulmonary hypertension, 
2 supraventricular arrhythmias, 1 heart failure, 1 death for 
heart failure, 1 pulmonary embolism, 1 peripheral vascular 
disease, 1 transient ischemic attack, and 1 death after acute 
chest syndrome. The mean age at the first complication was 
45.86 ± 10.21 years (range: 29–57 years). The mean time 
from the first MRI to the development of a cardiac complica-
tion was 50.77 ± 26.72 months.

Table 2 shows the comparison of baseline characteristics 
as well as MRI parameters between patients free of events 
and patients who developed a cardiovascular event. No sig-
nificant difference was detected for gender, type of SCD 
(HbS homozygosity vs compound heterozygosity for HbS 
and either β0 or β + thalassemia), presence of regular trans-
fusions or chelation therapy, and indices of iron overload. 
Cardiovascular events were associated with aging and with 
lower baseline serum hemoglobin levels. Patients suffering 
a cardiovascular event had significantly lower LV EF and 

significantly higher right ventricular (RV) mass index at the 
baseline MRI while no difference was found in all other 
biventricular function parameters or atrial areas.

Table 3 shows the results of the univariate Cox regression 
analysis. Among the non-MRI parameters, aging and lower 
serum hemoglobin levels emerged as the significant univariate 
prognosticators of cardiovascular complications. Multivari-
ate analysis revealed that both variables remained prognostic 
indicators (age: HR = 1.08, 95%CI = 1.01–1.15, P = 0.025 
and serum hemoglobin: HR = 0.33, 95%CI = 0.14–0.76, 
P = 0.010). No significant correlation was detected between 
age and serum hemoglobin levels (R =  − 0.064, P = 0.551). 
Among the MRI parameters, LV EF and RV mass index 
were significant univariate prognosticators of cardiovascular 
complications. Both variables remained significant prog-
nosticators at the multivariate analysis (LV EF: HR = 0.88, 
95%CI = 0.79–0.98, P = 0.025 and RV mass index: HR = 1.09, 
95%CI = 1.01–1.18, P = 0.047). Due to the low number of 
events, it was not possible to perform a multivariate model 
including all four univariate prognosticators.

The patient who died of HF showed a baseline global 
heart T2* = 9.94 ms and all segments with T2* < 20 ms. 

Table 2  Comparison of baseline 
characteristics in SCD patients 
free of events versus those who 
developed a cardiovascular 
event during the follow-up

N, number; SCD, sickle cell disease; MRI, magnetic resonance imaging; LIC, liver iron concentration; LV, 
left ventricular; EDVI, end-diastolic volume index; EF, ejection fraction; RV, right ventricular

Variable No cardiovascular 
events (N = 91)

Cardiovascular events (N = 11) P

Females, N (%) 47 (51.6) 6 (54.5) 0.856
Age (yrs) 33.51 ± 12.69 41.63 ± 10.37 0.044
Type of SCD, N (%)
  Homozigous HbS 23 (25.3) 1 (9.1) 0.451
  HbS/β-thalassemia 68 (74.7) 10 (90.9)
Splenectomy, N (%) 51 (56.0) 7 (63.6) 0.753
Regular transfusions, N (%) 44 (48.4) 5 (45.5) 0.856
Chelation therapy, N (%) 44 (48.4) 7 (63.9) 0.525
Hydroxyurea therapy, N (%) 41/75 (54.7) 7/10 (70.0) 0.502
Serum hemoglobin (g/dl) 9.56 ± 1.20 8.41 ± 1.07 0.001
Serum ferritin (ng/l) 1323.62 ± 1564.33 1191.90 ± 1271.25 0.653
MRI LIC (mg/g/dw) 6.83 ± 10.19 6.72 ± 7.28 0.750
MRI LIC ≥ 3 mg/g/dw, N (%) 49 (53.8) 7 (63.6) 0.750
Global heart T2*(ms) 36.11 ± 5.90 35.00 ± 10.11 0.817
Global heart T2* < 20 ms, N (%) 1 (1.1) 9 (9.1) 0.205
N. of segments with T2* < 20 ms 0.95 ± 1.91 2.00 ± 4.79 0.955
LV EDVI (ml/m2) 93.36 ± 20.76 96.53 ± 21.28 0.559
LV mass index (g/m2) 61.54 ± 16.83 67.25 ± 17.89 0.268
LV EF (%) 62.01 ± 6.72 56.47 ± 6.13 0.011
RV EDVI (ml/m2) 83.99 ± 20.58 85.65 ± 20.85 0.804
RV mass index (g/m2) 29.71 ± 9.22 34.87 ± 5.23 0.031
RV EF (%) 63.50 ± 7.55 60.13 ± 9.67 0.179
Focal myocardial fibrosis, N (%) 10/59 (16.9) 0/7 (0.0) 0.583
Left atrial area (cm2/m2) 12.84 ± 2.65 12.13 ± 2.27 0.500
Right atrial area (cm2/m2) 11.85 ± 2.31 12.29 ± 1.89 0.627
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The patient who developed HF had a baseline global heart 
T2* = 24.94 ms but 4 segments with T2* < 20 ms. The 
other patient with a baseline global heart T2* < 20 ms 
did not develop a cardiovascular complication during the 
follow-up but after the MRI she changed the chelation 
regimen, switching from deferoxamine in monotherapy 
to sequential deferoxamine/deferiprone.

Optimal cut‑off values of CMR predictors 
for cardiovascular complications

At ROC curve analysis, an LV EF < 58.9% predicted 
the presence of future cardiovascular events with a sen-
sitivity of 72.7 and a specificity of 71.9 (P = 0.002). 
The area under the curve was 0.71 (95%CI: 0.63–0.81) 
(Fig. 1A).

A RV mass index > 31 g/m2 predicted the presence of 
future cardiovascular events with a sensitivity of 87.5% 

and a specificity of 62.3% (P = 0.001). The area under the 
curve was 0.74 (95%CI: 0.62–0.84) (Fig. 1B).

Discussion

To the best of our knowledge, this is the first study explor-
ing the value of multiparametric CMR, including RV mass 
assessment, in the prognostic evaluation of SCD patients.

Table 3  Results of univariate and multivariate Cox regression analysis

N, number; SCD, sickle cell disease; MRI, magnetic resonance imag-
ing; LIC, liver iron concentration; LV, left ventricular; EDVI, end-
diastolic volume index; EF, ejection fraction; RV, right ventricular

Univariate analysis

HR (95%CI) P

Male gender 0.95 (0.29–3.15) 0.933
Age 1.07 (1.01–1.13) 0.034
Homozigous HBS mutation 0.29 (0.04–2.27) 0.237
Splenectomy 1.20 (0.35–4.13) 0.768
Regularly transfusions 0.78 (0.23–2.62) 0.686
Chelation therapy 1.66 (0.49–5.71) 0.418
Hydroxyurea therapy 1.42 (0.36–5.62) 0.615
Serum hemoglobin 0.034 (0.16–0.74) 0.006
Serum ferritin 1.00 (1.00–1.00) 0.780
MRI LIC 1.00 (0.95–1.06) 0.941
Global heart T2* 0.98 (0.89–1.07) 0.631
N. of segments with T2* < 20 ms 1.12 (0.94–1.34) 0.188
LV EDVI 1.01 (0.98–1.03) 0.827
LV mass index 1.02 (0.98–1.05) 0.402
LV EF 0.88 (0.80–0.97) 0.007
RV EDVI 1.00 (0.98–1.03) 0.876
RV mass index 1.07 (1.01–1.14) 0.046
RV EF 0.94 (0.87–1.03) 0.175
Focal myocardial fibrosis 0.04 (0.00–48.10) 0.501
Left atrial area index 0.88 (0.66–1.18) 0.384
Right atrial area index 1.01 (0.74–1.39) 0.936

Fig. 1  ROC curve analysis of left ventricular ejection fraction (A) 
and RV mass index (B) to predict cardiovascular events
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We included patients with homozygous HbS and HbS/β-
thalassemia. HbS/β-thalassemias are classified as HbS/
β0 thalassemia and HbS/β + thalassemia, with the former 
being characterized by the absence of adult hemoglobin and 
a severe clinical course similar to homozygous SCD [49]. 
HbS/β + thalassemia is clinically heterogeneous, with vari-
able residual amounts of adult hemoglobin that determine 
the clinical course [50]. A recent echocardiographic study 
showed that diameters, thicknesses, masses, and volumes of 
cardiac chambers were comparable between HbS/β0 thalas-
semia and HbS/β + thalassemia patients, suggesting that, 
unlike other clinical parameters, the cardiac involvement in 
this disease does not depend so much on the thalassemia 
genotype [51]. In the present study, we detected comparable 
cardiac T2* values and biventricular function parameters 
by CMR between homozygous HbS and HbS/β-thalassemia 
patients and we considered all patients as a unique group, 
irrespective of the genotype.

In our cohort of SCD patients, reduced LV EF and 
increased RV mass index emerged as CMR-independent 
predictors of cardiovascular complications. LV EF is the 
most commonly used surrogate marker of LV systolic func-
tion. A meta-analysis including 19 studies reported no sig-
nificant differences between SCD patients and controls in 
LV EF assessed by echocardiography [52]. Unlike diastolic 
dysfunction, systolic dysfunction is considered rare among 
SCD patients [53]. Indeed, according to our ROC analysis, 
a relatively high threshold for LV EF (< 58.9%) predicted 
the presence of future cardiovascular events. In our cohort, 
LV EF was significantly correlated with hemoglobin, sug-
gesting that chronic anemia plays a key role in depressing 
LV systolic function and, consequently, in the development 
of cardiovascular complications. In support of this thesis, 
serum hemoglobin emerged as a clinical univariate prog-
nosticator of cardiovascular complications. However, the 
microcirculation damage due to vaso-occlusive crisis has 
been demonstrated to be another important contributor to the 
deterioration of LV systolic function [54]. In SCD, abnormal 
myocardial perfusion and flow reserve, related to erythrocyte 
sickling that occludes the small arteries, capillaries, and ven-
ules and endothelial proliferation, have been demonstrated 
by echocardiography [54] and myocardial scintigraphy [55, 
56]. In a study involving 22 children with SCD, myocardial 
perfusion defects were found in 8 patients, of whom 5 had 
cardiac symptoms (three episodes of cardiac failure, one of 
ventricular fibrillation, and one angina) [56].

Traditionally, the importance of the RV has been under-
estimated and overlooked in clinical practice and litera-
ture. However, in the last decades, the central role of the 
RV in the management and prognosis of many cardiac 
diseases has been recognized, changing our perspective 
towards the right side of the heart [57]. Junqueira et al. 
showed that SCD patients had significantly higher RV 

mass index than healthy subjects [58]. Pulmonary vascu-
lar endothelial damage/dysfunction can result in the loss 
of vascular reactivity, and activation of proliferative and 
antiapoptotic pathways, leading to vascular remodeling, 
and elevated pulmonary artery pressure [59]. Moreover, 
the high cardiac output causes increased pulmonary pres-
sure regardless of whether pulmonary vascular resistance 
is high or not [60]. As pulmonary pressures increase, the 
thin-walled RV begins to hypertrophy and based on our 
results, an RV mass index of 31 > g/m2 can predict the 
development of cardiovascular events. So, although larger 
studies are needed to confirm the prognostic impact of 
an increased RV mass index, the RV mass assessment 
should be included in the routine MRI of SCD patients. 
Since all three patients who developed PH had an RV mass 
index > 31 g/m2, the combination of both Doppler echo-
cardiography, which represents the non-invasive screen-
ing test for PH [61], and MRI may increase the positive 
predictive value [62] for the detection of right heart cath-
eterization (RHC)–confirmed PH. Although trans-thoracic 
echocardiography is largely used as an initial imaging 
modality, it has limited diagnostic capabilities for the 
evaluation of RV due to its thin wall, peculiar morphol-
ogy, and the anterior position in the chest.

In contrast to thalassemia major patients [63, 64], we did 
not detect an association between MIO and cardiac compli-
cations, most likely because significant MIO was detected 
only in two patients, and there were only two cases of heart 
failure. It has been demonstrated that MIO contributes less 
to the development of arrhythmias and pulmonary hyper-
tension than cardiac failure [63–66]. However, it should 
be pointed out that one of the two patients with significant 
MIO died of HF and in the other patient, the abnormal 
T2* prompted changes in clinical management. Indeed, 
the early start of aggressive chelation therapy can prevent, 
delay, or even reverse iron cardiomyopathy [67]. Although 
SCD patients have a lower risk for developing myocardial 
siderosis as compared to other hemoglobinopathies [68], our 
findings suggest once cardiac iron is present, it is associated 
with its own toxicity.

The contrast medium was administrated only in 66% of 
patients, partially explaining the absence of a correlation 
between focal fibrosis and cardiovascular complications. 
Most importantly, the LGE technique relies on the contrast 
between normal and abnormal myocardium areas and can-
not accurately detect a more diffuse fibrotic process affect-
ing the whole myocardium [69]. Conversely to focal fibrosis 
[58], diffuse myocardial fibrosis was found to be a common 
process in both mice models [70] and patients with SCD 
[71], associated with diastolic dysfunction and the restrictive 
physiology features of SCD-related cardiomyopathy.

Beyond CMR, aging emerged as a significant predic-
tor of cardiovascular complications. Aging itself results in 
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well-defined phenotypic changes, which render the cardio-
vascular system prone to disease, even in the absence of tra-
ditional and non-traditional risk factors [72]. On the other 
hand, as patients live longer, the chronic effects of sustained 
hemolytic anemia and vaso-occlusive events accumulate [53].

This study is limited by the low number of patients and 
of cardiovascular events, which prevented us to evaluate the 
prognostic association between the MRI parameters and the 
different types of cardiovascular events, considered separately. 
Larger studies are needed to explore this issue. Another limi-
tation is that the diagnosis of PH was not confirmed by RHC. 
Although RHC is the diagnostic gold standard for PH [73], it 
is an invasive and expensive procedure, unsuitable as a screen-
ing tool. Moreover, we did not have sufficient information on 
the quantitative β-globin defect of HbS/β-thalassemia patients 
(β0 or β + mutation) and we did not assess at the baseline MRI 
the hemoglobin A percentage, which could have been useful 
to better characterize or stratify our population.

Conclusion

Reduced left ventricular ejection fraction and increased right 
ventricular mass index showed a significant prognostic value 
in patients with SCD. This finding suggests that multipara-
metric CMR may be added as a screening tool for identifying 
SCD patients at high risk for cardiopulmonary and vascular 
diseases.
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